![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralab | Structured version Visualization version GIF version |
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralab | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3057 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒)) | |
2 | df-clab 2705 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | |
3 | ralab.1 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
4 | 3 | sbievw 2088 | . . . . . 6 ⊢ ([𝑥 / 𝑦]𝜑 ↔ 𝜓) |
5 | 2, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
7 | biid 261 | . . . 4 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜒)) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
9 | 8 | albii 1814 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ ∀𝑥(𝜓 → 𝜒)) |
10 | 1, 9 | bitri 275 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 [wsb 2060 ∈ wcel 2099 {cab 2704 ∀wral 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2705 df-ral 3057 |
This theorem is referenced by: rexab 3687 ralrnmpo 7554 funcnvuni 7933 kardex 9911 karden 9912 fimaxre3 12184 ptcnp 23519 ptrescn 23536 itg2leub 25657 addsuniflem 27911 mulsuniflem 28042 nmoubi 30575 nmopub 31711 nmfnleub 31728 nmcexi 31829 mblfinlem3 37121 ismblfin 37123 itg2addnc 37136 hbtlem2 42520 oaun3lem1 42775 |
Copyright terms: Public domain | W3C validator |