MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralab Structured version   Visualization version   GIF version

Theorem ralab 3684
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralab (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 3057 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒))
2 df-clab 2705 . . . . . 6 (𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
3 ralab.1 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
43sbievw 2088 . . . . . 6 ([𝑥 / 𝑦]𝜑𝜓)
52, 4bitri 275 . . . . 5 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
65imbi1i 349 . . . 4 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
7 biid 261 . . . 4 ((𝜓𝜒) ↔ (𝜓𝜒))
86, 7bitri 275 . . 3 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
98albii 1814 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ ∀𝑥(𝜓𝜒))
101, 9bitri 275 1 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532  [wsb 2060  wcel 2099  {cab 2704  wral 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-sb 2061  df-clab 2705  df-ral 3057
This theorem is referenced by:  rexab  3687  ralrnmpo  7554  funcnvuni  7933  kardex  9911  karden  9912  fimaxre3  12184  ptcnp  23519  ptrescn  23536  itg2leub  25657  addsuniflem  27911  mulsuniflem  28042  nmoubi  30575  nmopub  31711  nmfnleub  31728  nmcexi  31829  mblfinlem3  37121  ismblfin  37123  itg2addnc  37136  hbtlem2  42520  oaun3lem1  42775
  Copyright terms: Public domain W3C validator
OSZAR »