![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspn0 | Structured version Visualization version GIF version |
Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.) Avoid ax-10 2130, ax-12 2167. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
rspn0 | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4343 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | df-ral 3058 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | exim 1829 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜑)) | |
4 | ax5e 1908 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
5 | 3, 4 | syl6com 37 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → 𝜑)) |
6 | 2, 5 | biimtrid 241 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 ∅c0 4319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-ne 2937 df-ral 3058 df-dif 3948 df-nul 4320 |
This theorem is referenced by: hashge2el2dif 14468 rmodislmodlem 20806 rmodislmod 20807 rmodislmodOLD 20808 scmatf1 22427 fusgrregdegfi 29377 rusgr1vtxlem 29395 upgrewlkle2 29414 zarclsiin 33467 ralralimp 46649 |
Copyright terms: Public domain | W3C validator |