MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcgfi Structured version   Visualization version   GIF version

Theorem sbcgfi 3857
Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.)
Hypotheses
Ref Expression
sbcgfi.1 𝐴 ∈ V
sbcgfi.2 𝑥𝜑
Assertion
Ref Expression
sbcgfi ([𝐴 / 𝑥]𝜑𝜑)

Proof of Theorem sbcgfi
StepHypRef Expression
1 sbcgfi.1 . 2 𝐴 ∈ V
2 sbcgfi.2 . . 3 𝑥𝜑
32sbcgf 3853 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜑))
41, 3ax-mp 5 1 ([𝐴 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1778  wcel 2099  Vcvv 3471  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-sbc 3777
This theorem is referenced by:  csbgfi  3913  bnj110  34489  bnj1039  34602  mptsnunlem  36817  sbali  37585  sbexi  37586
  Copyright terms: Public domain W3C validator
OSZAR »