MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Visualization version   GIF version

Theorem simp112 1300
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)

Proof of Theorem simp112
StepHypRef Expression
1 simp12 1201 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
213ad2ant1 1130 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  axcontlem4  28798  ps-2b  38987  llncvrlpln2  39062  4atlem11b  39113  4atlem12b  39116  2lnat  39289  cdlemblem  39298  4atexlemex6  39579  cdleme24  39857  cdleme26ee  39865  cdlemg2idN  40101  cdlemg31c  40204  cdlemk26-3  40411  dihglblem2N  40799  0ellimcdiv  45066
  Copyright terms: Public domain W3C validator
OSZAR »