MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Visualization version   GIF version

Theorem simp131 1306
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1207 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant1 1131 1 (((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ax5seglem3  28741  exatleN  38877  3atlem1  38956  3atlem2  38957  3atlem5  38960  2llnjaN  39039  4atlem11b  39081  4atlem12b  39084  lplncvrlvol2  39088  dalemsea  39102  dath2  39210  cdlemblem  39266  dalawlem1  39344  lhpexle3lem  39484  4atexlemex6  39547  cdleme22f2  39820  cdleme22g  39821  cdlemg7aN  40098  cdlemg34  40185  cdlemj1  40294  cdlemk23-3  40375  cdlemk25-3  40377  cdlemk26b-3  40378  cdleml3N  40451
  Copyright terms: Public domain W3C validator
OSZAR »