![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1200 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem6 28738 lshpkrlem5 38580 lplnexllnN 39031 4atexlemutvt 39521 cdlemc5 39662 cdlemd2 39666 cdleme0moN 39692 cdleme3h 39702 cdleme5 39707 cdleme9 39720 cdleme11l 39736 cdleme14 39740 cdleme15c 39743 cdleme16b 39746 cdleme16d 39748 cdleme16e 39749 cdlemednpq 39766 cdleme20bN 39777 cdleme20j 39785 cdleme20l2 39788 cdleme20l 39789 cdleme22cN 39809 cdleme22d 39810 cdleme22e 39811 cdleme22f 39813 cdleme26fALTN 39829 cdleme26f 39830 cdleme26f2ALTN 39831 cdleme26f2 39832 cdleme27a 39834 cdleme32b 39909 cdleme32d 39911 cdleme32f 39913 cdleme39n 39933 cdleme40n 39935 cdlemg2fv2 40067 cdlemg17h 40135 cdlemg27b 40163 cdlemg28b 40170 cdlemg28 40171 cdlemg29 40172 cdlemg33a 40173 cdlemg33d 40176 cdlemk7u-2N 40355 cdlemk11u-2N 40356 cdlemk12u-2N 40357 cdlemk26-3 40373 cdlemk27-3 40374 cdlemkfid3N 40392 cdlemn11c 40676 |
Copyright terms: Public domain | W3C validator |