![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4234 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | sslin 4235 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9ss 3993 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3946 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: disjxiun 5145 f1un 6859 undomOLD 9085 strleun 17126 dprdss 19986 dprd2da 19999 ablfac1b 20027 tgcl 22885 innei 23042 hausnei2 23270 bwth 23327 fbssfi 23754 fbunfip 23786 fgcl 23795 blin2 24348 vtxdun 29308 vtxdginducedm1 29370 5oai 31484 mayetes3i 31552 mdsl0 32133 neibastop1 35843 ismblfin 37134 heibor1lem 37282 pl42lem2N 39453 pl42lem3N 39454 ntrk2imkb 43467 ssin0 44419 iscnrm3llem2 47969 |
Copyright terms: Public domain | W3C validator |