MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4237
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4234 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4235 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3993 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3946  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-in 3954  df-ss 3964
This theorem is referenced by:  disjxiun  5145  f1un  6859  undomOLD  9085  strleun  17126  dprdss  19986  dprd2da  19999  ablfac1b  20027  tgcl  22885  innei  23042  hausnei2  23270  bwth  23327  fbssfi  23754  fbunfip  23786  fgcl  23795  blin2  24348  vtxdun  29308  vtxdginducedm1  29370  5oai  31484  mayetes3i  31552  mdsl0  32133  neibastop1  35843  ismblfin  37134  heibor1lem  37282  pl42lem2N  39453  pl42lem3N  39454  ntrk2imkb  43467  ssin0  44419  iscnrm3llem2  47969
  Copyright terms: Public domain W3C validator
OSZAR »