![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 578 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1107 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: opelopabt 5536 ordelinel 6473 nelrnfvne 7090 omass 8605 nnmass 8649 f1imaeng 9039 ssfi 9202 genpass 11038 adddir 11241 le2tri3i 11380 addsub12 11509 subdir 11684 ltaddsub 11724 leaddsub 11726 div12 11930 xmulass 13304 fldiv2 13864 modsubdir 13943 digit2 14236 muldivbinom2 14260 ccatass 14576 ccatw2s1cl 14612 repswcshw 14800 s3tpop 14898 absdiflt 15302 absdifle 15303 binomrisefac 16024 cos01gt0 16173 rpnnen2lem4 16199 rpnnen2lem7 16202 sadass 16451 lubub 18508 lubl 18509 symggrplem 18841 reslmhm2b 20944 cncrng 21321 ipcl 21570 ma1repveval 22491 mp2pm2mplem5 22730 opnneiss 23040 llyi 23396 nllyi 23397 cfiluweak 24218 cniccibl 25788 cnicciblnc 25790 ply1term 26156 explog 26546 logrec 26713 usgredgop 29001 usgr2v1e2w 29083 cusgrsizeinds 29284 clwwlknonex2 29937 4cycl2vnunb 30118 frrusgrord0lem 30167 frrusgrord0 30168 numclwwlk7 30219 lnocoi 30585 hvaddsubass 30869 hvmulcan2 30901 hhssabloilem 31089 hhssnv 31092 homco1 31629 homulass 31630 hoadddir 31632 hoaddsubass 31643 hosubsub4 31646 kbmul 31783 lnopmulsubi 31804 mdsl3 32144 cdj3lem2 32263 probmeasb 34055 signswmnd 34194 bnj563 34379 revpfxsfxrev 34730 lfuhgr2 34733 fnessex 35835 incsequz2 37227 ltrncnvatb 39615 jm2.17a 42384 lnrfgtr 42547 bdaybndex 42864 prsssprel 46830 dignnld 47727 |
Copyright terms: Public domain | W3C validator |