MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an3b Structured version   Visualization version   GIF version

Theorem syl3an3b 1402
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3b.1 (𝜑𝜃)
syl3an3b.2 ((𝜓𝜒𝜃) → 𝜏)
Assertion
Ref Expression
syl3an3b ((𝜓𝜒𝜑) → 𝜏)

Proof of Theorem syl3an3b
StepHypRef Expression
1 syl3an3b.1 . . 3 (𝜑𝜃)
21biimpi 215 . 2 (𝜑𝜃)
3 syl3an3b.2 . 2 ((𝜓𝜒𝜃) → 𝜏)
42, 3syl3an3 1162 1 ((𝜓𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  fnunres2  6670  fresaunres1  6773  fvun2  6993  fvpr2g  7204  nnmsucr  8650  entrfil  9217  enpr2  10031  xrlttr  13157  iccdil  13505  icccntr  13507  hashgt23el  14421  absexpz  15290  posglbdg  18412  f1omvdco3  19409  isdrngd  20662  isdrngdOLD  20664  unicld  22968  2ndcdisj2  23379  logrec  26713  cdj3lem3  32266  bnj563  34379  bnj1033  34605  lindsadd  37091  nn0rppwr  41896  stoweidlem14  45404
  Copyright terms: Public domain W3C validator
OSZAR »