![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an3b | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3b.1 | ⊢ (𝜑 ↔ 𝜃) |
syl3an3b.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl3an3b | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3b.1 | . . 3 ⊢ (𝜑 ↔ 𝜃) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → 𝜃) |
3 | syl3an3b.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syl3an3 1162 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: fnunres2 6670 fresaunres1 6773 fvun2 6993 fvpr2g 7204 nnmsucr 8650 entrfil 9217 enpr2 10031 xrlttr 13157 iccdil 13505 icccntr 13507 hashgt23el 14421 absexpz 15290 posglbdg 18412 f1omvdco3 19409 isdrngd 20662 isdrngdOLD 20664 unicld 22968 2ndcdisj2 23379 logrec 26713 cdj3lem3 32266 bnj563 34379 bnj1033 34605 lindsadd 37091 nn0rppwr 41896 stoweidlem14 45404 |
Copyright terms: Public domain | W3C validator |