MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1408
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . 2 ((𝜒𝜓𝜃) → 𝜑)
2 simp2 1135 . 2 ((𝜒𝜓𝜃) → 𝜓)
3 simp3 1136 . 2 ((𝜒𝜓𝜃) → 𝜃)
4 syld3an1.2 . 2 ((𝜑𝜓𝜃) → 𝜏)
51, 2, 3, 4syl3anc 1369 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  f1dom2g  8990  f1domfi2  9210  entrfi  9218  entrfir  9219  domtrfil  9220  domtrfi  9221  domtrfir  9222  php3  9237  findcard3  9310  npncan  11512  nnpcan  11514  ppncan  11533  muldivdir  11938  subdivcomb1  11940  div2neg  11968  ltmuldiv  12118  opfi1uzind  14495  sgrp2nmndlem4  18880  zndvds  21483  wsuceq123  35410  atlrelat1  38793  cvlatcvr1  38813  dih11  40738  wessf1ornlem  44558  mullimc  45004  mullimcf  45011  icccncfext  45275  stoweidlem34  45422  stoweidlem49  45437  stoweidlem57  45445  sigarexp  46247  f1ocof1ob  46461  el0ldepsnzr  47535
  Copyright terms: Public domain W3C validator
OSZAR »