MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vnex Structured version   Visualization version   GIF version

Theorem vnex 5309
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem vnex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nalset 5308 . 2 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 3474 . . . . . 6 𝑦 ∈ V
32tbt 369 . . . . 5 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1814 . . . 4 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2721 . . . 4 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 278 . . 3 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1843 . 2 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 322 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1532   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472
This theorem is referenced by:  vprc  5310
  Copyright terms: Public domain W3C validator
OSZAR »