Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-3xorbi2 Structured version   Visualization version   GIF version

Theorem wl-3xorbi2 36958
Description: Alternative form of wl-3xorbi 36957. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.)
Assertion
Ref Expression
wl-3xorbi2 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))

Proof of Theorem wl-3xorbi2
StepHypRef Expression
1 wl-3xorbi 36957 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))
2 biass 383 . 2 (((𝜑𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))
31, 2bitr4i 277 1 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  haddwhad 1586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-xor 1505  df-tru 1536  df-had 1587
This theorem is referenced by:  wl-3xorbi123d  36959  wl-3xorrot  36961  wl-3xorcoma  36962  wl-3xornot  36965
  Copyright terms: Public domain W3C validator
OSZAR »