![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem10 | Structured version Visualization version GIF version |
Description: We now have prepared everything. The unwanted variable 𝑢 is just in one place left. pm2.61 191 can be used in conjunction with wl-ax11-lem9 37060 to eliminate the second antecedent. Missing is something along the lines of ax-6 1964, so we could remove the first antecedent. But the Metamath axioms cannot accomplish this. Such a rule must reside one abstraction level higher than all others: It says that a distinctor implies a distinct variable condition on its contained setvar. This is only needed if such conditions are required, as ax-11v does. The result of this study is for me, that you cannot introduce a setvar capturing this condition, and hope to eliminate it later. (Contributed by Wolf Lammen, 30-Jun-2019.) |
Ref | Expression |
---|---|
wl-ax11-lem10 | ⊢ (∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-ax11-lem8 37059 | . . . . 5 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥𝜑)) | |
2 | wl-ax11-lem6 37057 | . . . . 5 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) | |
3 | 1, 2 | bitr3d 281 | . . . 4 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
4 | 3 | biimpd 228 | . . 3 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)) |
5 | 4 | ex 412 | . 2 ⊢ (∀𝑢 𝑢 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑))) |
6 | 5 | aecoms 2423 | 1 ⊢ (∀𝑦 𝑦 = 𝑢 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1532 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-12 2167 ax-13 2367 ax-wl-11v 37051 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |