MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor3 Structured version   Visualization version   GIF version

Theorem xor3 382
Description: Two ways to express "exclusive or". (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
xor3 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))

Proof of Theorem xor3
StepHypRef Expression
1 pm5.18 381 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))
21con2bii 357 . 2 ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
32bicomi 223 1 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  nbbn  383  pm5.15  1011  nbi2  1014  xorass  1509  hadnot  1596  nabbib  3042  nmogtmnf  30593  nmopgtmnf  31691  limsucncmpi  35929  wl-3xorbi  36952  wl-3xornot  36960  oneptri  42685  oaordnrex  42724  omnord1ex  42733  oenord1ex  42744  aiffnbandciffatnotciffb  46286  axorbciffatcxorb  46287  abnotbtaxb  46297  afv2orxorb  46608  line2ylem  47824  line2xlem  47826
  Copyright terms: Public domain W3C validator
OSZAR »