![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopgtmnf | Structured version Visualization version GIF version |
Description: The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopgtmnf | ⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoprepnf 31705 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) ≠ +∞)) | |
2 | df-ne 2938 | . . 3 ⊢ ((normop‘𝑇) ≠ +∞ ↔ ¬ (normop‘𝑇) = +∞) | |
3 | 1, 2 | bitrdi 286 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ ¬ (normop‘𝑇) = +∞)) |
4 | xor3 381 | . . 3 ⊢ (¬ ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) = +∞) ↔ ((normop‘𝑇) ∈ ℝ ↔ ¬ (normop‘𝑇) = +∞)) | |
5 | nbior 885 | . . 3 ⊢ (¬ ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) = +∞) → ((normop‘𝑇) ∈ ℝ ∨ (normop‘𝑇) = +∞)) | |
6 | 4, 5 | sylbir 234 | . 2 ⊢ (((normop‘𝑇) ∈ ℝ ↔ ¬ (normop‘𝑇) = +∞) → ((normop‘𝑇) ∈ ℝ ∨ (normop‘𝑇) = +∞)) |
7 | mnfltxr 13149 | . 2 ⊢ (((normop‘𝑇) ∈ ℝ ∨ (normop‘𝑇) = +∞) → -∞ < (normop‘𝑇)) | |
8 | 3, 6, 7 | 3syl 18 | 1 ⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 ⟶wf 6549 ‘cfv 6553 ℝcr 11147 +∞cpnf 11285 -∞cmnf 11286 < clt 11288 ℋchba 30757 normopcnop 30783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-hilex 30837 ax-hfvadd 30838 ax-hvcom 30839 ax-hvass 30840 ax-hv0cl 30841 ax-hvaddid 30842 ax-hfvmul 30843 ax-hvmulid 30844 ax-hvmulass 30845 ax-hvdistr1 30846 ax-hvdistr2 30847 ax-hvmul0 30848 ax-hfi 30917 ax-his1 30920 ax-his2 30921 ax-his3 30922 ax-his4 30923 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-sup 9475 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-n0 12513 df-z 12599 df-uz 12863 df-rp 13017 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-grpo 30331 df-gid 30332 df-ablo 30383 df-vc 30397 df-nv 30430 df-va 30433 df-ba 30434 df-sm 30435 df-0v 30436 df-nmcv 30438 df-hnorm 30806 df-hba 30807 df-hvsub 30809 df-nmop 31677 |
This theorem is referenced by: nmopre 31708 nmophmi 31869 bdophsi 31934 bdopcoi 31936 |
Copyright terms: Public domain | W3C validator |