MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nep0 Structured version   Visualization version   GIF version

Theorem 0nep0 5362
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 5311 . . 3 ∅ ∈ V
21snnz 4785 . 2 {∅} ≠ ∅
32necomi 2992 1 ∅ ≠ {∅}
Colors of variables: wff setvar class
Syntax hints:  wne 2937  c0 4326  {csn 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-v 3475  df-dif 3952  df-nul 4327  df-sn 4633
This theorem is referenced by:  0inp0  5363  opthprc  5746  2dom  9061  pw2eng  9109  djuexb  9940  hashge3el3dif  14487  cat1  18093  isusp  24186  bj-1upln0  36521  clsk1indlem0  43502  mnuprdlem1  43740  mnuprdlem2  43741
  Copyright terms: Public domain W3C validator
OSZAR »