![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12303 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12322 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 11191 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11245 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2825 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7415 ℂcc 11131 1c1 11134 + caddc 11136 4c4 12294 5c5 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-1cn 11191 ax-addcl 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2720 df-clel 2806 df-2 12300 df-3 12301 df-4 12302 df-5 12303 |
This theorem is referenced by: 6cn 12328 6m1e5 12368 5p2e7 12393 5p3e8 12394 5p4e9 12395 5p5e10 12773 5t2e10 12802 5recm6rec 12846 bpoly4 16030 ef01bndlem 16155 dec5dvds 17027 dec5nprm 17029 2exp11 17053 2exp16 17054 prmlem1 17071 17prm 17080 139prm 17087 163prm 17088 317prm 17089 631prm 17090 1259lem1 17094 1259lem2 17095 1259lem3 17096 1259lem4 17097 2503lem1 17100 2503lem2 17101 2503lem3 17102 4001lem1 17104 4001lem2 17105 4001lem3 17106 4001lem4 17107 4001prm 17108 log2ublem3 26874 log2ub 26875 ppiub 27131 bclbnd 27207 bposlem4 27214 bposlem5 27215 bposlem6 27216 bposlem8 27218 bposlem9 27219 lgsdir2lem1 27252 2lgslem3c 27325 2lgsoddprmlem3d 27340 ex-fac 30255 fib6 34021 hgt750lem2 34279 12lcm5e60 41474 lcmineqlem23 41517 3lexlogpow5ineq1 41520 3lexlogpow5ineq5 41526 aks4d1p1p4 41537 aks4d1p1p6 41539 aks4d1p1p7 41540 sqn5i 41850 4t5e20 41856 235t711 41858 ex-decpmul 41859 inductionexd 43576 fmtno5lem1 46884 fmtno5lem2 46885 257prm 46892 fmtno4prmfac193 46904 fmtno4nprmfac193 46905 flsqrt5 46925 139prmALT 46927 127prm 46930 5tcu2e40 46946 41prothprmlem2 46949 41prothprm 46950 2exp340mod341 47064 gbpart8 47099 linevalexample 47454 ackval3012 47756 5m4e1 48221 |
Copyright terms: Public domain | W3C validator |