![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12303 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 12324 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 11190 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11244 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2825 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7414 ℂcc 11130 1c1 11133 + caddc 11135 5c5 12294 6c6 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2720 df-clel 2806 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 |
This theorem is referenced by: 7cn 12330 7m1e6 12368 6p2e8 12395 6p3e9 12396 halfpm6th 12457 6p4e10 12773 6t2e12 12805 6t3e18 12806 6t5e30 12808 5recm6rec 12845 bpoly2 16027 bpoly3 16028 bpoly4 16029 efi4p 16107 ef01bndlem 16154 cos01bnd 16156 3lcm2e6woprm 16579 6lcm4e12 16580 2exp8 17051 2exp11 17052 2exp16 17053 19prm 17080 83prm 17085 163prm 17087 317prm 17088 631prm 17089 1259lem1 17093 1259lem2 17094 1259lem3 17095 1259lem4 17096 1259lem5 17097 2503lem1 17099 2503lem2 17100 2503lem3 17101 2503prm 17102 4001lem1 17103 4001lem2 17104 4001lem4 17106 4001prm 17107 sincos6thpi 26443 sincos3rdpi 26444 1cubrlem 26766 log2ublem3 26873 log2ub 26874 basellem5 27010 basellem8 27013 ppiub 27130 bclbnd 27206 bposlem8 27217 bposlem9 27218 2lgslem3d 27325 2lgsoddprmlem3d 27339 ex-exp 30253 ex-bc 30255 ex-gcd 30260 ex-lcm 30261 hgt750lemd 34274 hgt750lem2 34278 problem5 35267 60gcd6e6 41469 60lcm7e420 41475 3exp7 41518 3lexlogpow5ineq1 41519 3lexlogpow5ineq5 41525 aks4d1p1p5 41540 aks4d1p1 41541 lhe4.4ex1a 43760 wallispi2lem2 45454 fmtno5lem1 46887 fmtno5lem4 46890 fmtno5 46891 fmtno4prmfac 46906 fmtno5faclem2 46914 fmtno5faclem3 46915 fmtno5fac 46916 flsqrt5 46928 139prmALT 46930 127prm 46933 mod42tp1mod8 46936 2t6m3t4e0 47406 zlmodzxzequa 47558 zlmodzxzequap 47561 |
Copyright terms: Public domain | W3C validator |