![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version |
Description: A simplification of class abstraction. Commuted form of abid1 2862. See comments there. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2862 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | 1 | eqcomi 2734 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 |
This theorem is referenced by: csbid 3898 csbconstg 3904 csbie 3921 abss 4050 ssab 4051 abssi 4059 notab 4299 dfrab3 4304 notrab 4307 eusn 4730 uniintsn 4985 iunidOLD 5059 axrep6g 5288 csbexg 5305 imai 6072 dffv4 6888 orduniss2 7833 dfixp 8914 euen1b 9048 pwfir 9197 modom2 9266 infmap2 10239 cshwsexaOLD 14805 ustfn 24122 ustn0 24141 lrrecse 27875 lrrecpred 27877 fpwrelmap 32558 eulerpartlemgvv 34052 ballotlem2 34164 dffv5 35576 ptrest 37148 cnambfre 37197 cnvepresex 37861 pmapglb 39298 polval2N 39434 rngunsnply 42661 iocinico 42704 |
Copyright terms: Public domain | W3C validator |