![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 4061 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2866 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 4016 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 {cab 2704 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: ssab2 4074 intab 4983 opabss 5214 relopabiALT 5827 exse2 7929 opiota 8067 mpoexw 8087 fsplitfpar 8127 tfrlem8 8409 fiprc 9074 fival 9441 hartogslem1 9571 dmttrcl 9750 rnttrcl 9751 tz9.12lem1 9816 rankuni 9892 scott0 9915 r0weon 10041 alephval3 10139 aceq3lem 10149 dfac5lem4 10155 dfac2b 10159 cff 10277 cfsuc 10286 cff1 10287 cflim2 10292 cfss 10294 axdc3lem 10479 axdclem 10548 gruina 10847 nqpr 11043 infcvgaux1i 15841 4sqlem1 16922 sscpwex 17803 cssval 21619 topnex 22917 islocfin 23439 hauspwpwf1 23909 itg2lcl 25675 2sqlem7 27375 scutf 27763 isismt 28356 nmcexi 31854 opabssi 32421 lsmsnorb 33118 dispcmp 33465 cnre2csqima 33517 mppspstlem 35186 colinearex 35661 itg2addnclem 37149 itg2addnc 37152 eldiophb 42180 |
Copyright terms: Public domain | W3C validator |