MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Visualization version   GIF version

Theorem infcvgaux1i 15836
Description: Auxiliary theorem for applications of supcvg 15835. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
Assertion
Ref Expression
infcvgaux1i (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2 infcvg.2 . . . . . . 7 (𝑦𝑋𝐴 ∈ ℝ)
32renegcld 11672 . . . . . 6 (𝑦𝑋 → -𝐴 ∈ ℝ)
4 eleq1 2817 . . . . . 6 (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
53, 4syl5ibrcom 246 . . . . 5 (𝑦𝑋 → (𝑥 = -𝐴𝑥 ∈ ℝ))
65rexlimiv 3145 . . . 4 (∃𝑦𝑋 𝑥 = -𝐴𝑥 ∈ ℝ)
76abssi 4065 . . 3 {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ⊆ ℝ
81, 7eqsstri 4014 . 2 𝑅 ⊆ ℝ
9 infcvg.3 . . . . . 6 𝑍𝑋
10 eqid 2728 . . . . . 6 -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
1110nfth 1796 . . . . . . 7 𝑦-𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
12 csbeq1a 3906 . . . . . . . . 9 (𝑦 = 𝑍𝐴 = 𝑍 / 𝑦𝐴)
1312negeqd 11485 . . . . . . . 8 (𝑦 = 𝑍 → -𝐴 = -𝑍 / 𝑦𝐴)
1413eqeq2d 2739 . . . . . . 7 (𝑦 = 𝑍 → (-𝑍 / 𝑦𝐴 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴))
1511, 14rspce 3598 . . . . . 6 ((𝑍𝑋 ∧ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴) → ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
169, 10, 15mp2an 691 . . . . 5 𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴
17 negex 11489 . . . . . 6 -𝑍 / 𝑦𝐴 ∈ V
18 nfcsb1v 3917 . . . . . . . . 9 𝑦𝑍 / 𝑦𝐴
1918nfneg 11487 . . . . . . . 8 𝑦-𝑍 / 𝑦𝐴
2019nfeq2 2917 . . . . . . 7 𝑦 𝑥 = -𝑍 / 𝑦𝐴
21 eqeq1 2732 . . . . . . 7 (𝑥 = -𝑍 / 𝑦𝐴 → (𝑥 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝐴))
2220, 21rexbid 3268 . . . . . 6 (𝑥 = -𝑍 / 𝑦𝐴 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴))
2317, 22elab 3667 . . . . 5 (-𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
2416, 23mpbir 230 . . . 4 -𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2524, 1eleqtrri 2828 . . 3 -𝑍 / 𝑦𝐴𝑅
2625ne0ii 4338 . 2 𝑅 ≠ ∅
27 infcvg.4 . 2 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
288, 26, 273pm3.2i 1337 1 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  {cab 2705  wne 2937  wral 3058  wrex 3067  csb 3892  wss 3947  c0 4323   class class class wbr 5148  cr 11138  cle 11280  -cneg 11476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477  df-neg 11478
This theorem is referenced by:  infcvgaux2i  15837
  Copyright terms: Public domain W3C validator
OSZAR »