![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 680 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 1stconst 8105 omlimcl 8598 odi 8599 oelim2 8615 mapxpen 9167 unwdomg 9607 dfac12lem2 10167 infunsdom 10237 fin1a2s 10437 ccatpfx 14683 frlmup1 21731 fbasrn 23787 lmmbr 25185 grporcan 30327 unoplin 31729 hmoplin 31751 superpos 32163 ccatf1 32672 subfacp1lem5 34794 matunitlindflem1 37089 poimirlem4 37097 itg2addnclem 37144 ftc1anclem6 37171 fdc 37218 ismtyres 37281 isdrngo2 37431 rngohomco 37447 rngoisocnv 37454 dssmapnvod 43450 climxrrelem 45137 dvdsn1add 45327 dvnprodlem1 45334 stoweidlem27 45415 fourierdlem97 45591 qndenserrnbllem 45682 sge0iunmptlemfi 45801 |
Copyright terms: Public domain | W3C validator |