![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infunsdom | Structured version Visualization version GIF version |
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
infunsdom | ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 9005 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | infunsdom1 10242 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) | |
3 | 2 | anass1rs 653 | . . . 4 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵 ≺ 𝑋) ∧ 𝐴 ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
4 | 3 | adantlrl 718 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐴 ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
5 | 1, 4 | sylan2 591 | . 2 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐴 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
6 | simpll 765 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝑋 ∈ dom card) | |
7 | sdomdom 9005 | . . . . . . 7 ⊢ (𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋) | |
8 | 7 | ad2antll 727 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ≼ 𝑋) |
9 | numdom 10067 | . . . . . 6 ⊢ ((𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋) → 𝐵 ∈ dom card) | |
10 | 6, 8, 9 | syl2anc 582 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ∈ dom card) |
11 | sdomdom 9005 | . . . . . . 7 ⊢ (𝐴 ≺ 𝑋 → 𝐴 ≼ 𝑋) | |
12 | 11 | ad2antrl 726 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ≼ 𝑋) |
13 | numdom 10067 | . . . . . 6 ⊢ ((𝑋 ∈ dom card ∧ 𝐴 ≼ 𝑋) → 𝐴 ∈ dom card) | |
14 | 6, 12, 13 | syl2anc 582 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ∈ dom card) |
15 | domtri2 10018 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) | |
16 | 10, 14, 15 | syl2anc 582 | . . . 4 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) |
17 | 16 | biimpar 476 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐴 ≺ 𝐵) → 𝐵 ≼ 𝐴) |
18 | uncom 4152 | . . . . . 6 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
19 | infunsdom1 10242 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋)) → (𝐵 ∪ 𝐴) ≺ 𝑋) | |
20 | 18, 19 | eqbrtrid 5185 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
21 | 20 | anass1rs 653 | . . . 4 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴 ≺ 𝑋) ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
22 | 21 | adantlrr 719 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
23 | 17, 22 | syldan 589 | . 2 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐴 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
24 | 5, 23 | pm2.61dan 811 | 1 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∪ cun 3945 class class class wbr 5150 dom cdm 5680 ωcom 7874 ≼ cdom 8966 ≺ csdm 8967 cardccrd 9964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9539 df-dju 9930 df-card 9968 |
This theorem is referenced by: csdfil 23816 |
Copyright terms: Public domain | W3C validator |