![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 956 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 866 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 867 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 856 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 208 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 |
This theorem is referenced by: andir 1007 anddi 1009 cadan 1603 indi 4274 indifdirOLD 4286 unrab 4306 uniprOLD 4926 uniun 4933 unopab 5230 xpundi 5746 difxp 6168 coundir 6252 imadif 6637 unpreima 7072 soseq 8164 tpostpos 8252 elznn0nn 12603 faclbnd4lem4 14288 opsrtoslem1 21999 mbfmax 25591 fta1glem2 26116 ofmulrt 26229 lgsquadlem3 27328 nogesgn1o 27619 nosep1o 27627 noinfbnd2lem1 27676 difrab2 32309 ordtconnlem1 33525 ballotlemodife 34117 subfacp1lem6 34795 satf0op 34987 lineunray 35743 wl-ifpimpr 36945 wl-df2-3mintru2 36964 poimirlem30 37123 itg2addnclem2 37145 sticksstones22 41640 lzunuz 42188 diophun 42193 rmydioph 42435 fzunt 42885 fzuntd 42886 fzunt1d 42887 fzuntgd 42888 rp-isfinite6 42948 relexpxpmin 43147 andi3or 43454 clsk1indlem3 43473 simpcntrab 46258 zeoALTV 47010 |
Copyright terms: Public domain | W3C validator |