![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > simpcntrab | Structured version Visualization version GIF version |
Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
Ref | Expression |
---|---|
simpcntrab.a | ⊢ 𝐵 = (Base‘𝐺) |
simpcntrab.b | ⊢ 0 = (0g‘𝐺) |
simpcntrab.c | ⊢ 𝑍 = (Cntr‘𝐺) |
simpcntrab.d | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
simpcntrab | ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpcntrab.a | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | simpcntrab.b | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
3 | simpcntrab.d | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
4 | 3 | simpggrpd 20045 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
5 | simpcntrab.c | . . . . . . 7 ⊢ 𝑍 = (Cntr‘𝐺) | |
6 | 5 | cntrnsg 19288 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝐺)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (NrmSGrp‘𝐺)) |
8 | 1, 2, 3, 7 | simpgnsgeqd 20051 | . . . 4 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) |
9 | 8 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵))) |
10 | andi 1006 | . . . 4 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) ↔ ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) | |
11 | 10 | biimpi 215 | . . 3 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) → ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = { 0 }) → 𝑍 = { 0 }) | |
13 | 12 | orim1i 908 | . . 3 ⊢ (((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
14 | 9, 11, 13 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
15 | oveq2 7422 | . . . . . . 7 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝑍) = (𝐺 ↾s 𝐵)) | |
16 | 5 | oveq2i 7425 | . . . . . . 7 ⊢ (𝐺 ↾s 𝑍) = (𝐺 ↾s (Cntr‘𝐺)) |
17 | 15, 16 | eqtr3di 2783 | . . . . . 6 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
19 | 1 | ressid 17218 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
20 | 4, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐵) = 𝐺) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = 𝐺) |
22 | 18, 21 | eqtr3d 2770 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) = 𝐺) |
23 | eqid 2728 | . . . . . . 7 ⊢ (𝐺 ↾s (Cntr‘𝐺)) = (𝐺 ↾s (Cntr‘𝐺)) | |
24 | 23 | cntrabl 19791 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
27 | 22, 26 | eqeltrrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → 𝐺 ∈ Abel) |
28 | 27 | orim2i 909 | . 2 ⊢ ((𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
29 | 14, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 {csn 4624 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 ↾s cress 17202 0gc0g 17414 Grpcgrp 18883 NrmSGrpcnsg 19069 Cntrccntr 19260 Abelcabl 19729 SimpGrpcsimpg 20040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-nsg 19072 df-cntz 19261 df-cntr 19262 df-cmn 19730 df-abl 19731 df-simpg 20041 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |