![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-taginv | Structured version Visualization version GIF version |
Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-taginv | ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglinv 36484 | . 2 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | |
2 | bj-sngltag 36495 | . . . 4 ⊢ (𝑥 ∈ V → ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴)) | |
3 | 2 | elv 3479 | . . 3 ⊢ ({𝑥} ∈ sngl 𝐴 ↔ {𝑥} ∈ tag 𝐴) |
4 | 3 | abbii 2798 | . 2 ⊢ {𝑥 ∣ {𝑥} ∈ sngl 𝐴} = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
5 | 1, 4 | eqtri 2756 | 1 ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 {cab 2705 Vcvv 3473 {csn 4632 sngl bj-csngl 36477 tag bj-ctag 36486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3068 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-sn 4633 df-pr 4635 df-bj-sngl 36478 df-bj-tag 36487 |
This theorem is referenced by: bj-projval 36508 |
Copyright terms: Public domain | W3C validator |