Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj216 Structured version   Visualization version   GIF version

Theorem bnj216 34363
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj216.1 𝐵 ∈ V
Assertion
Ref Expression
bnj216 (𝐴 = suc 𝐵𝐵𝐴)

Proof of Theorem bnj216
StepHypRef Expression
1 bnj216.1 . . 3 𝐵 ∈ V
21sucid 6451 . 2 𝐵 ∈ suc 𝐵
3 eleq2 2818 . 2 (𝐴 = suc 𝐵 → (𝐵𝐴𝐵 ∈ suc 𝐵))
42, 3mpbiri 258 1 (𝐴 = suc 𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3471  suc csuc 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-un 3952  df-sn 4630  df-suc 6375
This theorem is referenced by:  bnj219  34364  bnj1098  34414  bnj556  34531  bnj557  34532  bnj594  34543  bnj944  34569  bnj966  34575  bnj969  34577  bnj1145  34624
  Copyright terms: Public domain W3C validator
OSZAR »