![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj216 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj216.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bnj216 | ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj216.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | sucid 6451 | . 2 ⊢ 𝐵 ∈ suc 𝐵 |
3 | eleq2 2818 | . 2 ⊢ (𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ suc 𝐵)) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3471 suc csuc 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-un 3952 df-sn 4630 df-suc 6375 |
This theorem is referenced by: bnj219 34364 bnj1098 34414 bnj556 34531 bnj557 34532 bnj594 34543 bnj944 34569 bnj966 34575 bnj969 34577 bnj1145 34624 |
Copyright terms: Public domain | W3C validator |