Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj938 Structured version   Visualization version   GIF version

Theorem bnj938 34683
Description: Technical lemma for bnj69 34756. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj938.1 𝐷 = (ω ∖ {∅})
bnj938.2 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj938.3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj938.4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj938.5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj938 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑓,𝑚,𝑛)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑓,𝑚,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj938
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 2807 . . 3 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21bnj706 34500 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → ∃𝑥 𝑥 = 𝑋)
3 bnj291 34457 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) ↔ ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑋𝐴))
43simplbi 496 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → (𝑅 FrSe 𝐴𝜏𝜎))
5 bnj602 34661 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
65eqeq2d 2736 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
7 bnj938.4 . . . . . . . . 9 (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
86, 7bitr4di 288 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑′))
983anbi2d 1437 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚𝜑′𝜓′)))
10 bnj938.2 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
119, 10bitr4di 288 . . . . . 6 (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ 𝜏))
12113anbi2d 1437 . . . . 5 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) ↔ (𝑅 FrSe 𝐴𝜏𝜎)))
134, 12imbitrrid 245 . . . 4 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → (𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎)))
14 bnj938.1 . . . . 5 𝐷 = (ω ∖ {∅})
15 biid 260 . . . . 5 ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′))
16 bnj938.3 . . . . 5 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
17 biid 260 . . . . 5 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
18 bnj938.5 . . . . 5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1914, 15, 16, 17, 18bnj546 34642 . . . 4 ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2013, 19syl6 35 . . 3 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V))
2120exlimiv 1925 . 2 (∃𝑥 𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V))
222, 21mpcom 38 1 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wral 3050  Vcvv 3461  cdif 3941  c0 4322  {csn 4630   ciun 4997  suc csuc 6372   Fn wfn 6543  cfv 6548  ωcom 7870  w-bnj17 34432   predc-bnj14 34434   FrSe w-bnj15 34438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6373  df-on 6374  df-lim 6375  df-suc 6376  df-iota 6500  df-fv 6556  df-om 7871  df-bnj17 34433  df-bnj14 34435  df-bnj13 34437  df-bnj15 34439
This theorem is referenced by:  bnj944  34684  bnj969  34692
  Copyright terms: Public domain W3C validator
OSZAR »