MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomgOLD Structured version   Visualization version   GIF version

Theorem brdomgOLD 8972
Description: Obsolete version of brdomg 8971 as of 29-Nov-2024. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
brdomgOLD (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomgOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq2 6784 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
21exbidv 1917 . . . 4 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
3 f1eq3 6785 . . . . 5 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
43exbidv 1917 . . . 4 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
5 df-dom 8960 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
62, 4, 5brabg 5536 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
76ex 412 . 2 (𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
8 reldom 8964 . . . . 5 Rel ≼
98brrelex1i 5729 . . . 4 (𝐴𝐵𝐴 ∈ V)
10 f1f 6788 . . . . . 6 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
11 fdm 6726 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
12 vex 3474 . . . . . . . 8 𝑓 ∈ V
1312dmex 7912 . . . . . . 7 dom 𝑓 ∈ V
1411, 13eqeltrrdi 2838 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
1510, 14syl 17 . . . . 5 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
1615exlimiv 1926 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
179, 16pm5.21ni 377 . . 3 𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1817a1d 25 . 2 𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
197, 18pm2.61i 182 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470   class class class wbr 5143  dom cdm 5673  wf 6539  1-1wf1 6540  cdom 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-cnv 5681  df-dm 5683  df-rn 5684  df-fn 6546  df-f 6547  df-f1 6548  df-dom 8960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »