![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brrabga | Structured version Visualization version GIF version |
Description: The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022.) |
Ref | Expression |
---|---|
brrabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
brrabga.2 | ⊢ 𝑅 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brrabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉𝑅𝐶 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5144 | . . 3 ⊢ (〈𝐴, 𝐵〉𝑅𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ 𝑅) | |
2 | brrabga.2 | . . . 4 ⊢ 𝑅 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2817 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ 𝑅 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (〈𝐴, 𝐵〉𝑅𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
5 | brrabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
6 | 5 | eloprabga 7524 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) |
7 | 4, 6 | bitrid 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉𝑅𝐶 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 〈cop 4630 class class class wbr 5143 {coprab 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-oprab 7419 |
This theorem is referenced by: brcnvrabga 37869 |
Copyright terms: Public domain | W3C validator |