MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir Structured version   Visualization version   GIF version

Theorem caovdir 7655
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1 𝐴 ∈ V
caovdir.2 𝐵 ∈ V
caovdir.3 𝐶 ∈ V
caovdir.com (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
caovdir.distr (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
Assertion
Ref Expression
caovdir ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem caovdir
StepHypRef Expression
1 caovdir.3 . . 3 𝐶 ∈ V
2 caovdir.1 . . 3 𝐴 ∈ V
3 caovdir.2 . . 3 𝐵 ∈ V
4 caovdir.distr . . 3 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
51, 2, 3, 4caovdi 7640 . 2 (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))
6 ovex 7453 . . 3 (𝐴𝐹𝐵) ∈ V
7 caovdir.com . . 3 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
81, 6, 7caovcom 7618 . 2 (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐴𝐹𝐵)𝐺𝐶)
91, 2, 7caovcom 7618 . . 3 (𝐶𝐺𝐴) = (𝐴𝐺𝐶)
101, 3, 7caovcom 7618 . . 3 (𝐶𝐺𝐵) = (𝐵𝐺𝐶)
119, 10oveq12i 7432 . 2 ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))
125, 8, 113eqtr3i 2764 1 ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  (class class class)co 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-ov 7423
This theorem is referenced by:  caovdilem  7656  adderpqlem  10978  addassnq  10982  prlem934  11057  prlem936  11071  recexsrlem  11127  mulgt0sr  11129
  Copyright terms: Public domain W3C validator
OSZAR »