![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3d | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 39795 and cdleme3 39796. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
cdleme1.l | ⊢ ≤ = (le‘𝐾) |
cdleme1.j | ⊢ ∨ = (join‘𝐾) |
cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
cdleme3.3 | ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme3d | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
2 | cdleme3.3 | . . . 4 ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
3 | 2 | oveq2i 7428 | . . 3 ⊢ (𝑄 ∨ 𝑉) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
4 | 3 | oveq2i 7428 | . 2 ⊢ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
5 | 1, 4 | eqtr4i 2756 | 1 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ‘cfv 6547 (class class class)co 7417 lecple 17240 joincjn 18303 meetcmee 18304 Atomscatm 38821 LHypclh 39543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6499 df-fv 6555 df-ov 7420 |
This theorem is referenced by: cdleme3g 39793 cdleme3h 39794 cdleme9 39812 |
Copyright terms: Public domain | W3C validator |