MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl2 Structured version   Visualization version   GIF version

Theorem clatglbcl2 18498
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)

Proof of Theorem clatglbcl2
StepHypRef Expression
1 clatglbcl.b . . . . . 6 𝐵 = (Base‘𝐾)
21fvexi 6911 . . . . 5 𝐵 ∈ V
32elpw2 5347 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
43biimpri 227 . . 3 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
54adantl 481 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
6 eqid 2728 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
7 clatglbcl.g . . . . 5 𝐺 = (glb‘𝐾)
81, 6, 7isclat 18492 . . . 4 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
9 simprr 772 . . . 4 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)) → dom 𝐺 = 𝒫 𝐵)
108, 9sylbi 216 . . 3 (𝐾 ∈ CLat → dom 𝐺 = 𝒫 𝐵)
1110adantr 480 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝐺 = 𝒫 𝐵)
125, 11eleqtrrd 2832 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3947  𝒫 cpw 4603  dom cdm 5678  cfv 6548  Basecbs 17180  Posetcpo 18299  lubclub 18301  glbcglb 18302  CLatccla 18490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-dm 5688  df-iota 6500  df-fv 6556  df-clat 18491
This theorem is referenced by:  isglbd  18501  clatglb  18508  clatglble  18509  glbconN  38849
  Copyright terms: Public domain W3C validator
OSZAR »