![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > connclo | Structured version Visualization version GIF version |
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
connclo.1 | ⊢ (𝜑 → 𝐽 ∈ Conn) |
connclo.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
connclo.3 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
connclo.4 | ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
connclo | ⊢ (𝜑 → 𝐴 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connclo.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2941 | . 2 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
3 | connclo.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
4 | connclo.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | |
5 | 3, 4 | elind 4194 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
6 | connclo.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
7 | isconn.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | isconn 23335 | . . . . . . 7 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | 8 | simprbi 495 | . . . . . 6 ⊢ (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
11 | 5, 10 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ {∅, 𝑋}) |
12 | elpri 4653 | . . . 4 ⊢ (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) |
14 | 13 | ord 862 | . 2 ⊢ (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋)) |
15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∩ cin 3946 ∅c0 4324 {cpr 4632 ∪ cuni 4910 ‘cfv 6551 Topctop 22813 Clsdccld 22938 Conncconn 23333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-iota 6503 df-fv 6559 df-conn 23334 |
This theorem is referenced by: conndisj 23338 cnconn 23344 connsubclo 23346 t1connperf 23358 txconn 23611 connpconn 34850 cvmliftmolem2 34897 cvmlift2lem12 34929 mblfinlem1 37135 |
Copyright terms: Public domain | W3C validator |