![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgruvtxb | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgruvtxb | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6901 | . . 3 ⊢ (𝑔 = 𝐺 → (UnivVtx‘𝑔) = (UnivVtx‘𝐺)) | |
2 | fveq2 6901 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
3 | cplgruvtxb.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 2, 3 | eqtr4di 2784 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
5 | 1, 4 | eqeq12d 2742 | . 2 ⊢ (𝑔 = 𝐺 → ((UnivVtx‘𝑔) = (Vtx‘𝑔) ↔ (UnivVtx‘𝐺) = 𝑉)) |
6 | df-cplgr 29347 | . 2 ⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} | |
7 | 5, 6 | elab2g 3668 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 Vtxcvtx 28932 UnivVtxcuvtx 29321 ComplGraphccplgr 29345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-iota 6506 df-fv 6562 df-cplgr 29347 |
This theorem is referenced by: iscplgr 29351 cusgruvtxb 29358 nbcplgr 29370 |
Copyright terms: Public domain | W3C validator |