![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwsexa | Structured version Visualization version GIF version |
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.) |
Ref | Expression |
---|---|
cshwsexa | ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2735 | . . . . 5 ⊢ ((𝑊 cyclShift 𝑛) = 𝑤 ↔ 𝑤 = (𝑊 cyclShift 𝑛)) | |
2 | 1 | rexbii 3091 | . . . 4 ⊢ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)) |
3 | 2 | abbii 2798 | . . 3 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} |
4 | ovex 7459 | . . . 4 ⊢ (0..^(♯‘𝑊)) ∈ V | |
5 | 4 | abrexex 7974 | . . 3 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} ∈ V |
6 | 3, 5 | eqeltri 2825 | . 2 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |
7 | rabssab 4083 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⊆ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
8 | 6, 7 | ssexi 5326 | 1 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2705 ∃wrex 3067 {crab 3430 Vcvv 3473 ‘cfv 6553 (class class class)co 7426 0cc0 11148 ..^cfzo 13669 ♯chash 14331 Word cword 14506 cyclShift ccsh 14780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2529 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-sn 4633 df-pr 4635 df-uni 4913 df-iota 6505 df-fv 6561 df-ov 7429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |