![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cuspusp | Structured version Visualization version GIF version |
Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
Ref | Expression |
---|---|
cuspusp | ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 24217 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∅c0 4323 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 TopOpenctopn 17403 Filcfil 23762 fLim cflim 23851 UnifStcuss 24171 UnifSpcusp 24172 CauFiluccfilu 24204 CUnifSpccusp 24215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-cusp 24216 |
This theorem is referenced by: cnextucn 24221 ucnextcn 24222 rrhcn 33598 rrhre 33622 |
Copyright terms: Public domain | W3C validator |