![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnvrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 38041. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
dfcnvrefrels2 | ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrels 38054 | . 2 ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
2 | df-cnvrefs 38053 | . 2 ⊢ CnvRefs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | dmexg 7907 | . . . . . 6 ⊢ (𝑟 ∈ V → dom 𝑟 ∈ V) | |
4 | 3 | elv 3469 | . . . . 5 ⊢ dom 𝑟 ∈ V |
5 | rnexg 7908 | . . . . . 6 ⊢ (𝑟 ∈ V → ran 𝑟 ∈ V) | |
6 | 5 | elv 3469 | . . . . 5 ⊢ ran 𝑟 ∈ V |
7 | 4, 6 | xpex 7753 | . . . 4 ⊢ (dom 𝑟 × ran 𝑟) ∈ V |
8 | inex2g 5315 | . . . 4 ⊢ ((dom 𝑟 × ran 𝑟) ∈ V → ( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
9 | brcnvssr 38034 | . . . 4 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) | |
10 | 7, 8, 9 | mp2b 10 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))) |
11 | elrels6 38018 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
12 | 11 | elv 3469 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
13 | 12 | biimpi 215 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
14 | 13 | sseq1d 4004 | . . 3 ⊢ (𝑟 ∈ Rels → ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
15 | 10, 14 | bitrid 282 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟))◡ S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟)))) |
16 | 1, 2, 15 | abeqinbi 37781 | 1 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 ∩ cin 3938 ⊆ wss 3939 class class class wbr 5143 I cid 5569 × cxp 5670 ◡ccnv 5671 dom cdm 5672 ran crn 5673 Rels crels 37707 S cssr 37708 CnvRefs ccnvrefs 37712 CnvRefRels ccnvrefrels 37713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-rels 38013 df-ssr 38026 df-cnvrefs 38053 df-cnvrefrels 38054 |
This theorem is referenced by: elcnvrefrels2 38062 |
Copyright terms: Public domain | W3C validator |