![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3776 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3778 instead of df-sbc 3776. (dfsbcq2 3778 is needed because unlike Quine we do not overload the df-sb 2061 syntax.) As a consequence of these theorems, we can derive sbc8g 3783, which is a weaker version of df-sbc 3776 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3783, so we will allow direct use of df-sbc 3776 after Theorem sbc2or 3784 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2817 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3776 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3776 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2705 [wsbc 3775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2720 df-clel 2806 df-sbc 3776 |
This theorem is referenced by: sbceq1d 3780 sbc8g 3783 spsbc 3788 sbccow 3798 sbcco 3801 sbcco2 3802 sbcie2g 3817 elrabsf 3823 eqsbc1 3824 csbeq1 3893 cbvralcsf 3935 sbcnestgfw 4415 sbcco3gw 4419 sbcnestgf 4420 sbcco3g 4424 csbie2df 4437 reusngf 4673 reuprg0 4703 sbcop 5486 reuop 6292 ralrnmptw 7099 ralrnmpt 7101 tfindes 7862 findcard2 9183 findcard2OLD 9303 ac6sfi 9306 indexfi 9379 nn1suc 12259 uzind4s2 12918 wrdind 14699 wrd2ind 14700 prmind2 16650 mndind 18774 elmptrab 23725 isfildlem 23755 ifeqeqx 32327 wrdt2ind 32669 bnj609 34543 bnj601 34546 sdclem2 37210 fdc1 37214 sbccom2 37593 sbccom2f 37594 sbccom2fi 37595 elimhyps 38428 dedths 38429 elimhyps2 38431 dedths2 38432 lshpkrlem3 38579 rexrabdioph 42205 rexfrabdioph 42206 2rexfrabdioph 42207 3rexfrabdioph 42208 4rexfrabdioph 42209 6rexfrabdioph 42210 7rexfrabdioph 42211 2nn0ind 42357 zindbi 42358 axfrege52c 43308 frege58c 43342 frege92 43376 2sbc6g 43843 2sbc5g 43844 pm14.122b 43851 pm14.24 43860 iotavalsb 43861 sbiota1 43862 fvsb 43880 or2expropbilem1 46405 ich2exprop 46802 reupr 46853 |
Copyright terms: Public domain | W3C validator |