Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimhyps Structured version   Visualization version   GIF version

Theorem elimhyps 38427
Description: A version of elimhyp 4589 using explicit substitution. (Contributed by NM, 15-Jun-2019.)
Hypothesis
Ref Expression
elimhyps.1 [𝐵 / 𝑥]𝜑
Assertion
Ref Expression
elimhyps [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑

Proof of Theorem elimhyps
StepHypRef Expression
1 sbceq1a 3786 . 2 (𝑥 = if(𝜑, 𝑥, 𝐵) → (𝜑[if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑))
2 dfsbcq 3777 . 2 (𝐵 = if(𝜑, 𝑥, 𝐵) → ([𝐵 / 𝑥]𝜑[if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑))
3 elimhyps.1 . 2 [𝐵 / 𝑥]𝜑
41, 2, 3elimhyp 4589 1 [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  [wsbc 3775  ifcif 4524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-sbc 3776  df-if 4525
This theorem is referenced by:  renegclALT  38429
  Copyright terms: Public domain W3C validator
OSZAR »