![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dif20el | Structured version Visualization version GIF version |
Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
Ref | Expression |
---|---|
dif20el | ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ondif2 8516 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → 1o ∈ 𝐴) |
3 | 0lt1o 8518 | . . 3 ⊢ ∅ ∈ 1o | |
4 | eldifi 4122 | . . . 4 ⊢ (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On) | |
5 | ontr1 6409 | . . . 4 ⊢ (𝐴 ∈ On → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2o) → ((∅ ∈ 1o ∧ 1o ∈ 𝐴) → ∅ ∈ 𝐴)) |
7 | 3, 6 | mpani 695 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) → (1o ∈ 𝐴 → ∅ ∈ 𝐴)) |
8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∖ cdif 3942 ∅c0 4318 Oncon0 6363 1oc1o 8473 2oc2o 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6366 df-on 6367 df-suc 6369 df-1o 8480 df-2o 8481 |
This theorem is referenced by: oeordi 8601 oeworde 8607 oelimcl 8614 oeeulem 8615 oeeui 8616 cantnfresb 42747 |
Copyright terms: Public domain | W3C validator |