![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 4113 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-dif 3948 |
This theorem is referenced by: difeq12i 4117 dfun3 4265 dfin3 4266 dfin4 4267 invdif 4268 indif 4269 difundi 4279 difindi 4281 difdif2 4286 dif32 4292 difabs 4293 dfsymdif3 4296 notrab 4312 dif0 4373 unvdif 4475 difdifdir 4492 dfif3 4543 difpr 4807 iinvdif 5083 cnvin 6149 fndifnfp 7183 dif1o 8519 dfsdom2 9119 brttrcl2 9737 ttrcltr 9739 rnttrcl 9745 dju1dif 10195 m1bits 16415 clsval2 22991 mretopd 23033 cmpfi 23349 llycmpkgen2 23491 pserdvlem2 26402 nbgrssvwo2 29238 finsumvtxdg2ssteplem1 29422 frgrwopreglem3 30187 iundifdifd 32416 iundifdif 32417 difres 32454 gsumhashmul 32842 pmtrcnelor 32886 cycpmconjv 32937 cyc3conja 32952 sibfof 34047 eulerpartlemmf 34082 kur14lem2 34904 kur14lem6 34908 kur14lem7 34909 satfv1 35060 dfon4 35576 onint1 36020 bj-2upln1upl 36590 poimirlem8 37188 dfssr2 38057 prjspval2 42119 diophren 42315 ordeldif1o 42771 nonrel 43096 dssmapntrcls 43640 salincl 45792 meaiuninc 45949 carageniuncllem1 45989 iscnrm3rlem3 48089 |
Copyright terms: Public domain | W3C validator |