![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iundifdifd | Structured version Visualization version GIF version |
Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
Ref | Expression |
---|---|
iundifdifd | ⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iundif2 5072 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 5057 | . . . . . 6 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | difeq2i 4111 | . . . . 5 ⊢ (𝑂 ∖ ∩ 𝐴) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | eqtr4i 2756 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝐴) |
5 | 4 | difeq2i 4111 | . . 3 ⊢ (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)) = (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) |
6 | intssuni2 4971 | . . . . 5 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝒫 𝑂) | |
7 | unipw 5446 | . . . . 5 ⊢ ∪ 𝒫 𝑂 = 𝑂 | |
8 | 6, 7 | sseqtrdi 4023 | . . . 4 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝑂) |
9 | dfss4 4253 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) |
11 | 5, 10 | eqtr2id 2778 | . 2 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
12 | 11 | ex 411 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ≠ wne 2930 ∖ cdif 3936 ⊆ wss 3939 ∅c0 4318 𝒫 cpw 4598 ∪ cuni 4903 ∩ cint 4944 ∪ ciun 4991 ∩ ciin 4992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-pw 4600 df-sn 4625 df-pr 4627 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 |
This theorem is referenced by: sigaclci 33808 |
Copyright terms: Public domain | W3C validator |