Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundifdifd Structured version   Visualization version   GIF version

Theorem iundifdifd 32397
Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016.)
Assertion
Ref Expression
iundifdifd (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂

Proof of Theorem iundifdifd
StepHypRef Expression
1 iundif2 5072 . . . . 5 𝑥𝐴 (𝑂𝑥) = (𝑂 𝑥𝐴 𝑥)
2 intiin 5057 . . . . . 6 𝐴 = 𝑥𝐴 𝑥
32difeq2i 4111 . . . . 5 (𝑂 𝐴) = (𝑂 𝑥𝐴 𝑥)
41, 3eqtr4i 2756 . . . 4 𝑥𝐴 (𝑂𝑥) = (𝑂 𝐴)
54difeq2i 4111 . . 3 (𝑂 𝑥𝐴 (𝑂𝑥)) = (𝑂 ∖ (𝑂 𝐴))
6 intssuni2 4971 . . . . 5 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 𝒫 𝑂)
7 unipw 5446 . . . . 5 𝒫 𝑂 = 𝑂
86, 7sseqtrdi 4023 . . . 4 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴𝑂)
9 dfss4 4253 . . . 4 ( 𝐴𝑂 ↔ (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
108, 9sylib 217 . . 3 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → (𝑂 ∖ (𝑂 𝐴)) = 𝐴)
115, 10eqtr2id 2778 . 2 ((𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅) → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥)))
1211ex 411 1 (𝐴 ⊆ 𝒫 𝑂 → (𝐴 ≠ ∅ → 𝐴 = (𝑂 𝑥𝐴 (𝑂𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wne 2930  cdif 3936  wss 3939  c0 4318  𝒫 cpw 4598   cuni 4903   cint 4944   ciun 4991   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-pw 4600  df-sn 4625  df-pr 4627  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994
This theorem is referenced by:  sigaclci  33808
  Copyright terms: Public domain W3C validator
OSZAR »