![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjiunel | Structured version Visualization version GIF version |
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
disjiunel.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
disjiunel.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
disjiunel.3 | ⊢ (𝜑 → 𝐸 ⊆ 𝐴) |
disjiunel.4 | ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 𝐸)) |
Ref | Expression |
---|---|
disjiunel | ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjiunel.3 | . . . . 5 ⊢ (𝜑 → 𝐸 ⊆ 𝐴) | |
2 | disjiunel.4 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 𝐸)) | |
3 | 2 | eldifad 3957 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
4 | 3 | snssd 4809 | . . . . 5 ⊢ (𝜑 → {𝑌} ⊆ 𝐴) |
5 | 1, 4 | unssd 4183 | . . . 4 ⊢ (𝜑 → (𝐸 ∪ {𝑌}) ⊆ 𝐴) |
6 | disjiunel.1 | . . . 4 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
7 | disjss1 5114 | . . . 4 ⊢ ((𝐸 ∪ {𝑌}) ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵)) | |
8 | 5, 6, 7 | sylc 65 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵) |
9 | 2 | eldifbd 3958 | . . . 4 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐸) |
10 | disjiunel.2 | . . . . 5 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
11 | 10 | disjunsn 32378 | . . . 4 ⊢ ((𝑌 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐸) → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥 ∈ 𝐸 𝐵 ∧ (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅))) |
12 | 3, 9, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥 ∈ 𝐸 𝐵 ∧ (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅))) |
13 | 8, 12 | mpbid 231 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐸 𝐵 ∧ (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅)) |
14 | 13 | simprd 495 | 1 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∖ cdif 3942 ∪ cun 3943 ∩ cin 3944 ⊆ wss 3945 ∅c0 4319 {csn 4625 ∪ ciun 4992 Disj wdisj 5108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rmo 3372 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-sn 4626 df-iun 4994 df-disj 5109 |
This theorem is referenced by: disjuniel 32381 |
Copyright terms: Public domain | W3C validator |