![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvscacbv | Structured version Visualization version GIF version |
Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.) |
Ref | Expression |
---|---|
dvhvscaval.s | ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
Ref | Expression |
---|---|
dvhvscacbv | ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvhvscaval.s | . 2 ⊢ · = (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) | |
2 | fveq1 6890 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑓))) | |
3 | coeq1 5854 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑓))) | |
4 | 2, 3 | opeq12d 4877 | . . 3 ⊢ (𝑠 = 𝑡 → 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉) |
5 | 2fveq3 6896 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡‘(1st ‘𝑓)) = (𝑡‘(1st ‘𝑔))) | |
6 | fveq2 6891 | . . . . 5 ⊢ (𝑓 = 𝑔 → (2nd ‘𝑓) = (2nd ‘𝑔)) | |
7 | 6 | coeq2d 5859 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑡 ∘ (2nd ‘𝑓)) = (𝑡 ∘ (2nd ‘𝑔))) |
8 | 5, 7 | opeq12d 4877 | . . 3 ⊢ (𝑓 = 𝑔 → 〈(𝑡‘(1st ‘𝑓)), (𝑡 ∘ (2nd ‘𝑓))〉 = 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
9 | 4, 8 | cbvmpov 7511 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
10 | 1, 9 | eqtri 2753 | 1 ⊢ · = (𝑡 ∈ 𝐸, 𝑔 ∈ (𝑇 × 𝐸) ↦ 〈(𝑡‘(1st ‘𝑔)), (𝑡 ∘ (2nd ‘𝑔))〉) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 〈cop 4630 × cxp 5670 ∘ ccom 5676 ‘cfv 6542 ∈ cmpo 7417 1st c1st 7987 2nd c2nd 7988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-co 5681 df-iota 6494 df-fv 6550 df-oprab 7419 df-mpo 7420 |
This theorem is referenced by: dvhvscaval 40627 |
Copyright terms: Public domain | W3C validator |