![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eceq2d | Structured version Visualization version GIF version |
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
Ref | Expression |
---|---|
eceq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eceq2d | ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eceq2 8758 | . 2 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 [cec 8716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8720 |
This theorem is referenced by: vrgpfval 19714 quslsm 33109 opprqusplusg 33194 opprqusmulr 33196 qsdrngi 33200 releldmqscoss 38126 aks6d1c6lem5 41643 prjspeclsp 42030 |
Copyright terms: Public domain | W3C validator |