MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab2 Structured version   Visualization version   GIF version

Theorem elab2 3671
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2.1 𝐴 ∈ V
elab2.2 (𝑥 = 𝐴 → (𝜑𝜓))
elab2.3 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2 (𝐴𝐵𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab2
StepHypRef Expression
1 elab2.1 . 2 𝐴 ∈ V
2 elab2.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab2.3 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 3669 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4ax-mp 5 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  {cab 2705  Vcvv 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806
This theorem is referenced by:  opabidw  5526  opabid  5527  oprabidw  7451  oprabid  7452  soseq  8164  wfrlem3OLDa  8331  tfrlem3a  8397  fsetfcdm  8878  cardprclem  10002  iunfictbso  10137  aceq3lem  10143  dfac5lem4  10149  kmlem9  10181  domtriomlem  10465  ltexprlem3  11061  ltexprlem4  11062  reclem2pr  11071  reclem3pr  11072  supsrlem  11134  supaddc  12211  supadd  12212  supmul1  12213  supmullem1  12214  supmullem2  12215  supmul  12216  01sqrexlem6  15226  infcvgaux2i  15836  mertenslem1  15862  mertenslem2  15863  4sqlem12  16924  conjnmzb  19206  sylow3lem2  19582  mdetunilem9  22521  txuni2  23468  xkoopn  23492  met2ndci  24430  2sqlem8  27358  2sqlem11  27361  madef  27782  eulerpartlemt  33991  eulerpartlemr  33994  eulerpartlemn  34001  subfacp1lem3  34792  subfacp1lem5  34794  rdgssun  36857  finxpsuclem  36876  heiborlem1  37284  heiborlem6  37289  heiborlem8  37291  cllem0  42996  fsetsnf  46433  fsetsnfo  46435  cfsetsnfsetf  46440  cfsetsnfsetf1  46441  cfsetsnfsetfo  46442
  Copyright terms: Public domain W3C validator
OSZAR »