MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Structured version   Visualization version   GIF version

Theorem cardprclem 9996
Description: Lemma for cardprc 9997. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
Assertion
Ref Expression
cardprclem ¬ 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardprclem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9 𝐴 = {𝑥 ∣ (card‘𝑥) = 𝑥}
21eleq2i 2821 . . . . . . . 8 (𝑥𝐴𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥})
3 abid 2709 . . . . . . . 8 (𝑥 ∈ {𝑥 ∣ (card‘𝑥) = 𝑥} ↔ (card‘𝑥) = 𝑥)
4 iscard 9992 . . . . . . . 8 ((card‘𝑥) = 𝑥 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
52, 3, 43bitri 297 . . . . . . 7 (𝑥𝐴 ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 𝑦𝑥))
65simplbi 497 . . . . . 6 (𝑥𝐴𝑥 ∈ On)
76ssriv 3982 . . . . 5 𝐴 ⊆ On
8 ssonuni 7776 . . . . 5 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
97, 8mpi 20 . . . 4 (𝐴 ∈ V → 𝐴 ∈ On)
10 domrefg 9001 . . . . 5 ( 𝐴 ∈ On → 𝐴 𝐴)
119, 10syl 17 . . . 4 (𝐴 ∈ V → 𝐴 𝐴)
12 elharval 9578 . . . 4 ( 𝐴 ∈ (har‘ 𝐴) ↔ ( 𝐴 ∈ On ∧ 𝐴 𝐴))
139, 11, 12sylanbrc 582 . . 3 (𝐴 ∈ V → 𝐴 ∈ (har‘ 𝐴))
147sseli 3974 . . . . . . . 8 (𝑧𝐴𝑧 ∈ On)
15 domrefg 9001 . . . . . . . . . 10 (𝑧 ∈ On → 𝑧𝑧)
1615ancli 548 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 ∈ On ∧ 𝑧𝑧))
17 elharval 9578 . . . . . . . . 9 (𝑧 ∈ (har‘𝑧) ↔ (𝑧 ∈ On ∧ 𝑧𝑧))
1816, 17sylibr 233 . . . . . . . 8 (𝑧 ∈ On → 𝑧 ∈ (har‘𝑧))
1914, 18syl 17 . . . . . . 7 (𝑧𝐴𝑧 ∈ (har‘𝑧))
20 harcard 9995 . . . . . . . 8 (card‘(har‘𝑧)) = (har‘𝑧)
21 fvex 6904 . . . . . . . . 9 (har‘𝑧) ∈ V
22 fveq2 6891 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → (card‘𝑥) = (card‘(har‘𝑧)))
23 id 22 . . . . . . . . . 10 (𝑥 = (har‘𝑧) → 𝑥 = (har‘𝑧))
2422, 23eqeq12d 2744 . . . . . . . . 9 (𝑥 = (har‘𝑧) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘𝑧)) = (har‘𝑧)))
2521, 24, 1elab2 3670 . . . . . . . 8 ((har‘𝑧) ∈ 𝐴 ↔ (card‘(har‘𝑧)) = (har‘𝑧))
2620, 25mpbir 230 . . . . . . 7 (har‘𝑧) ∈ 𝐴
27 eleq2 2818 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑧𝑤𝑧 ∈ (har‘𝑧)))
28 eleq1 2817 . . . . . . . . 9 (𝑤 = (har‘𝑧) → (𝑤𝐴 ↔ (har‘𝑧) ∈ 𝐴))
2927, 28anbi12d 631 . . . . . . . 8 (𝑤 = (har‘𝑧) → ((𝑧𝑤𝑤𝐴) ↔ (𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴)))
3021, 29spcev 3592 . . . . . . 7 ((𝑧 ∈ (har‘𝑧) ∧ (har‘𝑧) ∈ 𝐴) → ∃𝑤(𝑧𝑤𝑤𝐴))
3119, 26, 30sylancl 585 . . . . . 6 (𝑧𝐴 → ∃𝑤(𝑧𝑤𝑤𝐴))
32 eluni 4906 . . . . . 6 (𝑧 𝐴 ↔ ∃𝑤(𝑧𝑤𝑤𝐴))
3331, 32sylibr 233 . . . . 5 (𝑧𝐴𝑧 𝐴)
3433ssriv 3982 . . . 4 𝐴 𝐴
35 harcard 9995 . . . . 5 (card‘(har‘ 𝐴)) = (har‘ 𝐴)
36 fvex 6904 . . . . . 6 (har‘ 𝐴) ∈ V
37 fveq2 6891 . . . . . . 7 (𝑥 = (har‘ 𝐴) → (card‘𝑥) = (card‘(har‘ 𝐴)))
38 id 22 . . . . . . 7 (𝑥 = (har‘ 𝐴) → 𝑥 = (har‘ 𝐴))
3937, 38eqeq12d 2744 . . . . . 6 (𝑥 = (har‘ 𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴)))
4036, 39, 1elab2 3670 . . . . 5 ((har‘ 𝐴) ∈ 𝐴 ↔ (card‘(har‘ 𝐴)) = (har‘ 𝐴))
4135, 40mpbir 230 . . . 4 (har‘ 𝐴) ∈ 𝐴
4234, 41sselii 3975 . . 3 (har‘ 𝐴) ∈ 𝐴
4313, 42jctir 520 . 2 (𝐴 ∈ V → ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
44 eloni 6373 . . 3 ( 𝐴 ∈ On → Ord 𝐴)
45 ordn2lp 6383 . . 3 (Ord 𝐴 → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
469, 44, 453syl 18 . 2 (𝐴 ∈ V → ¬ ( 𝐴 ∈ (har‘ 𝐴) ∧ (har‘ 𝐴) ∈ 𝐴))
4743, 46pm2.65i 193 1 ¬ 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1534  wex 1774  wcel 2099  {cab 2705  wral 3057  Vcvv 3470  wss 3945   cuni 4903   class class class wbr 5142  Ord word 6362  Oncon0 6363  cfv 6542  cdom 8955  csdm 8956  harchar 9573  cardccrd 9952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-oi 9527  df-har 9574  df-card 9956
This theorem is referenced by:  cardprc  9997
  Copyright terms: Public domain W3C validator
OSZAR »