Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvintab Structured version   Visualization version   GIF version

Theorem elcnvcnvintab 43012
Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvcnvintab
StepHypRef Expression
1 cnvcnv 6196 . . . 4 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4201 . . . 4 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2756 . . 3 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
43eleq2i 2821 . 2 (𝐴 {𝑥𝜑} ↔ 𝐴 ∈ ((V × V) ∩ {𝑥𝜑}))
5 elinintab 43005 . 2 (𝐴 ∈ ((V × V) ∩ {𝑥𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
64, 5bitri 275 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wcel 2099  {cab 2705  Vcvv 3471  cin 3946   cint 4949   × cxp 5676  ccnv 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-int 4950  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686
This theorem is referenced by:  cnvcnvintabd  43030
  Copyright terms: Public domain W3C validator
OSZAR »