![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvcnvintab | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
elcnvcnvintab | ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6196 | . . . 4 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
2 | incom 4201 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtri 2756 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
4 | 3 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ((V × V) ∩ ∩ {𝑥 ∣ 𝜑})) |
5 | elinintab 43005 | . 2 ⊢ (𝐴 ∈ ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
6 | 4, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∈ wcel 2099 {cab 2705 Vcvv 3471 ∩ cin 3946 ∩ cint 4949 × cxp 5676 ◡ccnv 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-int 4950 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 |
This theorem is referenced by: cnvcnvintabd 43030 |
Copyright terms: Public domain | W3C validator |