![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm1cossres2 | Structured version Visualization version GIF version |
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
eldm1cossres2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm1cossres 37926 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) | |
2 | elecALTV 37732 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐵)) | |
3 | 2 | el2v1 37684 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐵)) |
4 | 3 | rexbidv 3174 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
5 | 1, 4 | bitr4d 282 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 ∃wrex 3066 Vcvv 3470 class class class wbr 5142 dom cdm 5672 ↾ cres 5674 [cec 8716 ≀ ccoss 37642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8720 df-coss 37877 |
This theorem is referenced by: eldmqs1cossres 38125 |
Copyright terms: Public domain | W3C validator |